六本木で働くデータサイエンティストのブログ

元祖「銀座で働くデータサイエンティスト」です / 道玄坂→銀座→東京→六本木

Rで計量時系列分析, 沖本 の検索結果:

実務の現場に多い時系列データ分析の際に注意しておきたい点を列挙してみる

こういうメタ分析系の記事を書く時というのは大抵ネタ切れの時なんですが(汗)、最近になってこの辺のポイントでつまずいて困っているビジネスデータ分析の現場の話を聞くことがまた増えてきたので自分向けの備忘録も兼ねて記事としてまとめておきます。 そうそう、時系列分析の話って厳密にやり始めるとキリがないので、例えば単位根過程まわり(特に共和分のあたりを含めた複数時系列間の関係性の話とか)は「トレンドに注意せよ」という大きなくくりにまとめて、厳密な議論は割愛して出来る限り実務面で押さえる…

2013年秋版:データサイエンティストを目指すなら揃えておくべき10冊

…(3件) を見る 「Rで計量時系列分析」シリーズ記事で大変お世話になった沖本本です。Hamiltonの大著"Time Series Analysis"のエッセンスが、その4分の1ぐらいの薄さにコンパクトにまとめてあり、非常に分かりやすいです。本格的な時系列モデリングの入門書として最適。 東大出版会シリーズは赤本と青本のみ残しました*2。新たに入ったのが久保先生の緑本です。また、計量時系列分析&状態空間モデルは現在それほど広く普及しているとは言い難いので入れるかどうか迷ったんで…

Rで計量時系列分析:状態変化を伴うモデル(閾値モデル、平滑推移モデル、マルコフ転換モデル)

前回の記事までは多変量時系列モデルとしてのVARモデルを扱ってきました。今回は一旦このシリーズの最終回ということで、元の単変量時系列モデルに戻って「状態変化を伴うモデル」を扱ってみようと思います。 ということでもはや毎回恒例になってますが、使用テキストはいつもの沖本本です。 経済・ファイナンスデータの計量時系列分析 (統計ライブラリー)作者: 沖本竜義出版社/メーカー: 朝倉書店発売日: 2010/02/01メディア: 単行本購入: 4人 クリック: 101回この商品を含むブ…

Rで計量時系列分析:単位根過程、見せかけの回帰、共和分、ベクトル誤差修正モデル

前回の記事ではVARモデルに基づく様々な計量時系列分析手法を取り上げました。今回はいよいよ現実世界の時系列データを扱う上では避けて通れない、単位根過程とそれにまつわる様々な問題とその解決策について触れてみようと思います。 ということでもはや毎回恒例になってますが、使用テキストはいつもの沖本本です。 経済・ファイナンスデータの計量時系列分析 (統計ライブラリー)作者: 沖本竜義出版社/メーカー: 朝倉書店発売日: 2010/02/01メディア: 単行本購入: 4人 クリック: …

Rで計量時系列分析:VARモデルから個々の時系列データ間の因果関係を推定する

前回の記事ではVARモデルの基礎までを取り上げました。ということで、今回はVARモデルに基づいて異なる時系列同士の因果関係を推定する3つの手法について取り上げてみようと思います。 ということで毎回毎回しつこいですが、使用テキストはいつもの沖本本です。 経済・ファイナンスデータの計量時系列分析 (統計ライブラリー)作者: 沖本竜義出版社/メーカー: 朝倉書店発売日: 2010/02/01メディア: 単行本購入: 4人 クリック: 101回この商品を含むブログ (6件) を見る …

Rで計量時系列分析:VARモデルの基礎(多変量時系列モデル)

前回の記事では単変量の時系列までを扱いました。今回は多変量(ベクトル)時系列を記述するVARモデルとその周辺のポイントを取り上げます。 ということでしつこいですが、使用テキストはいつもの沖本本です。 経済・ファイナンスデータの計量時系列分析 (統計ライブラリー)作者: 沖本竜義出版社/メーカー: 朝倉書店発売日: 2010/02/01メディア: 単行本購入: 4人 クリック: 101回この商品を含むブログ (6件) を見る 以下タイトルにのっとってRで各モデルの挙動を見ながら…

Rで計量時系列分析:AR, MA, ARMA, ARIMAモデル, 予測

前回の記事では計量時系列分析とは何ぞや?みたいなところをやりましたので、今回はいろはのイともいえるARIMAまわりから始めていこうと思います。 ということで改めて、使用テキストはいつものこちらです。 経済・ファイナンスデータの計量時系列分析 (統計ライブラリー)作者: 沖本竜義出版社/メーカー: 朝倉書店発売日: 2010/02/01メディア: 単行本購入: 4人 クリック: 101回この商品を含むブログ (6件) を見る 以下タイトルにのっとってRで各モデルの挙動を見ながら…

Rで計量時系列分析:はじめに覚えておきたいこと

機械学習は全然専門ではない僕が知ったかぶりをするのも何なので*1、もっともっと以前からそこそこやっている*2計量時系列分析の話でもしてお茶を濁してみることにします(笑)。 *1:新職場には正真正銘の機械学習の研究者から転じた先任のQuantitative Engineer & Researcherの人がいるので、僕なんぞが無理してやらなくても良いという構図 *2:っても実はVARとGranger因果周りが大半だったりする

マルコフ状態転換モデルのRパッケージ{MSwM}の使い方(異常値検出・ステータス変化検出などに有用)

…、とすればきちんと異常値とステータス変化を同時にモデリングすることが可能です。 ただ、それができるかどうか?というのは今のところ完全に経験(暗黙知)に依存している部分が大きいです。この辺はまた改めてマルコフ状態転換モデルについて書くときに、きちんと論じましょうということで。。。 *1:1万回でも10万回でも書きますが、アフィリエイトの類はやってませんよー *2:また改めて「Rで計量時系列分析」シリーズと称して詳しく書く予定です *3:何故か「ずーっと平坦」という推定結果になる