読者です 読者をやめる 読者になる 読者になる

六本木で働くデータサイエンティストのブログ

元祖「銀座で働くデータサイエンティスト」です / 道玄坂→銀座→東京→六本木

『コンピューターで「脳」がつくれるか』は人工知能に興味のある人なら知識ゼロからでも読める入門書

書評 書籍 機械学習

先日Japan.R 2016に大学時代の先輩*1を案内がてら参加したんですが、休憩時間に技術評論社のTさんがご恵贈くださったのがこちらの本。

コンピューターで「脳」がつくれるか

コンピューターで「脳」がつくれるか

著者は以前下記の過去記事でも筆頭にご紹介した@さん。

で、その内容なんですが基本的には初心者向けということもあり、なおかつ僕自身は@さんと同じく機械学習と神経科学双方の知識がある*2ということもあり、僕が書評すると「玄人が素人向けテキストを読んで明後日の方向の論評をする」状態になる恐れがあるかなと思いましたので、あえて機械学習人工知能も全くのド素人のうちの嫁さんに読んでもらいました。その嫁さんからのコメントをもとに、僕自身の感想も交えて書評させていただこうかと思います。

*1:とある会社の経営者です

*2:僕は元々ヒト認知神経科学分野の研究者をしておりました、ボンクラでしたが

続きを読む

統計的因果推論(4): 機械学習分類器による傾向スコアを調整してみる

R 機械学習 統計学 統計的因果推論

この記事は以下の記事の続きです。

ご覧の通り、機械学習分類器3種で傾向スコアを算出してみたらおかしな結果になったわけです。この点について、実は後日2点ほどコメントをいただきました。1つはブコメで、

統計的因果推論(3): 傾向スコア算出を機械学習に置き換えてみると - 六本木で働くデータサイエンティストのブログ

CM接触群と非接触群に分けて、傾向スコアの分布をみてみると、2群のスコアが0.25~0.75でしか重複していません。傾向スコアが0.25~0.75のデータに絞って比較すると、とりあえずは妥当な結論が出ると思います。後は、傾向

2016/10/12 21:46

とのことでした。これは確かにその通りかもということで、試してみる価値がありそうです。一方で半可通のMLerとしては以下の@さんからのコメントも気になったのでした。

ということでRでもprobability calibrationやりたいなぁと思ったんですが、調べても出てこないしこれは自分でRスクリプト書くしかないのかなぁと思っていたらありました。こんな感じです。

{caret}を使えば良いということなので、こちらについてはひとまず同じ{randomForest}を共通して使うことになるランダムフォレストに的を絞ってprobability calibrationを行った上で、傾向スコアを算出し直してみようと思います。


上記二者のどちらについても、前回の記事までで用いていたワークスペースをそのまま利用する前提ですので、この記事から読み始めたという方はお手数ですが過去2回分記事を遡ってRスクリプトを実行しておいてください。

続きを読む

Deep Learningで遊ぶ(3): LSTM-RNNで夏目漱石っぽい文章の生成にトライしてみる

R 機械学習 DeepLearning実践シリーズ

f:id:TJO:20161108173639p:plain

そう言えばこのシリーズ長らく放置してました(汗)。いよいよこのブログもネタ切れが著しくなってきたので、今更そんな古いネタやるのかよと怒られるのを承知で「単に自分がやってみたかったから」というだけの理由で今更感のあるネタをやることにします。ということで、今回のネタはLSTM-RNN (Long short-term memory Recurrent neural network)です。いつも通り完全に自分専用の備忘録としてしか書いていませんので、ちゃんと勉強したい人は他のもっときちんとした資料*1や書籍*2やソース*3を当たってください。。。

*1:QiitaでもCourseraでも

*2:人工知能学会本やMLP青本など

*3:要は原典論文とか

続きを読む