渋谷駅前で働くデータサイエンティストのブログ

元祖「六本木で働くデータサイエンティスト」です / 道玄坂→銀座→東京→六本木→渋谷駅前

R

VARそして時系列因果性分析の復習

「新型コロナウイルス感染症における治療の進展(令和2年10月29日に開催された第13回新型コロナウイルス感染症対策分科会事務局提出資料を基に内閣官房・内閣府作成)」という資料が世間で物議を醸しているようです。ただ、これを見ていて僕が個人的に気にな…

RにTorchとLightGBMがやってきた

これまで、RとPythonは両方使える人が少なくないながらも開発陣やコミュニティの思想が違うせいもあってか、「Rは統計学向け」「Pythonは機械学習向け」的な住み分けが年々進み、特に機械学習関連の重要なフレームワーク・ライブラリ類はPython向けのみがリ…

Rで機械学習モデルの解釈手法たちを試してみる

この記事の前段として、まず事前に昨年書いた機械学習モデルの解釈性についての記事をご覧ください。僕が知る限り、機械学習実践のデファクトスタンダードたるPython側ではLIMEやSHAPといった解釈手法については既に良く知られたOSS実装が出回っており、相応…

とある実験の記録

先日書いたこの記事ですが、「トイデータとは言え乱数シードを一つに決めて発生させたランダムウォークに対して実験をしているので、乱数シードを複数通りに変えてみたら結果は変わってくる(再現しない)のではないか?」という指摘を何人かの友人知人から…

時系列モデリングのおさらい:季節調整とトレンド抽出

COVID-19が世界中に感染拡大し、日本含め多くの国で外出や集会の制限(自粛)措置が取られて久しい昨今ですが、これに伴って多くのところでCOVID-19に関連したオープンデータが公開されるようになっており、データ分析を生業とする人間が実データを扱う良い…

改めて、汎化性能と交差検証のはなし

以前こんな記事を書きました。 この辺の話はとっくの昔に常識になっていると思っていたのですが、昨今様々な「モデル」が提唱されて公の場で喧伝されることが増えてきており、その中には明らかにこれらの記事で指摘されている問題に引っかかっているものがあ…

TensorFlow Probabilityを試してみる(1): 定番のEight SchoolsのモデリングをRStanと比較する

先日の記事でも書いたように、どうもここ最近RStan周りの環境が色々厳しくなっている気がしていて、仮にRStanが今後環境面での不具合やミスマッチなどで使えなくなったらベイジアンモデリングやれなくなって困るかも。。。という危惧を最近抱きつつあります…

『効果検証入門』はマーケティング実験&分析に関わる全ての人にお薦めの統計的因果推論の入門書

このブログを普段からお読みになっている皆さんはご存知かと思いますが、僕は割と口を酸っぱくして「マーケティングに携わるならきちんと実験して効果検証せよ、その介入がピュアな施策だろうと機械学習システムによるものだろうと変わらない」ということを…

Fashion-MNIST: 簡単になり過ぎたMNISTに代わる初心者向け画像認識ベンチマーク

(MNIST database - Wikipedia) 僕は画像認識分野は門外漢なのですが、ここ最近初心者向けにCNNのトレーニングを行うことを企画していて、その目的に適した画像認識のオープンデータセットを探していたのでした。 というと誰しも思いつくのがMNISTではないか…

Mac OSでR 3.6.1にアップデートしたらRStanが走らなくなったので、復旧させた話

この記事は完全に備忘録です。必要最低限の情報しか記されていませんので悪しからずご了承ください。色々事情があってつい最近Rを3.6.1にアップデートして、いつも通りパッケージをインストールし直していたのですが、こういう時に毎回コケるのはRStanと相場…

一般的な時系列のモデリング&予測に、機械学習系の手法よりも古典的な計量時系列分析の方が向いている理由を考えてみた(追記あり)

この記事は、以下の@icoxfog417さんによる問題提起に合わせたちょっとした実験をまとめたものです。時系列予測の問題において、機械学習のモデルより既存の統計モデル(ARMAモデルなど)の方が予測精度において優良な結果が出るという研究。データへの適合=予…

{CausalImpact}を使う上での注意点を簡単にまとめてみた

実はこのネタは元々別のところでやり取りのあった話題だったりします。色々な都合があってここ最近{CausalImpact}に触れる機会が自分に限らず周囲でも増えているのですが、若い人たちから「そもそも{CausalImpact}って何をしているんですか?使う際は何に気…

『RとStanではじめるベイズ統計モデリングによるデータ分析入門』は「みどりぼん」に取って替わる次世代の統計モデリング+ベイジアン入門書

ここ2ヶ月ぐらいに渡って多くの方々からご著書をご恵贈たまわっているのですが、そのうちの一冊がこちら。かつて計量時系列分析を学んでいた頃に僕も大変お世話になった、Logics of Blueブログの馬場さんの手による『RとStanではじめるベイズ統計モデリング…

Undersampling + baggingで不均衡データに対処した際の予測確率のバイアスを補正して、その結果を可視化してみる

この記事は以下の検証記事の続きです。 先日、Twitterでこんなお話を見かけました。分類問題で不均衡データを扱う際、ダウンサンプリングして学習すると予測確率にバイアスが生じるので、calibrationしようという話を書きましたhttps://t.co/qujK29crNY— 岸…

「データ分析をやるならRとPythonのどちらを使うべき?」への個人的な回答

(Background image by Pixabay)最近また「データ分析をやるならRとPythonのどちらでやるべきか」という話題が出ていたようです。 言語仕様やその他の使い勝手という点では、大体この記事に書いてあることを参考にすれば良いと思います。その上で、人には当然…

AutoML Tablesと他の機械学習モデルとのパフォーマンス比較をしてみた(追記あり)

以前よりGoogleではCloud AutoMLという"Learning to learn"フレームワークによる「人手完全不要の全自動機械学習モデリング&API作成」サービスを展開してきていましたが、それらは画像認識や商品推薦はたまた自然言語処理がメインで、最もオーソドックスな…

TensorFlow Probabilityのtfp.stsモジュールを使って構造時系列モデリングを回してみる

TensorFlow Probability (TFP)がリリースされてからしばらく経ちますが、最近になってこんなモジュールが公開されたと知りました。 Framework for Bayesian structural time series modelsと題されている通りで、ズバリTFPでベイズ構造時系列モデルを推定す…

機械学習のビジネス上の価値を「効果測定」して「数値評価」する方法

(Image by Pixabay)気が付けば、日本における第一次データサイエンティストブームから6年、人工知能ブーム開始から3年が経ったようです。意外と言っては何ですが、これまでのところ人工知能ブームも、そしてそれにブーストされた形で起こった第二次データサ…

「データサイエンティスト」「人工知能」「AI(トピックス)」のGoogleトレンドから向こう1年間のブーム動向を占ってみる

(Google Trends)最近時系列分析あまりやってないので、{bsts}の使い方を思い出しがてらついでに与太記事を書いてみます。お題は「データサイエンティスト」「人工知能」「AI(トピックス)」のGoogleトレンドから見る今後のブーム動向です。今回は互いに相互…

ガウス過程回帰・分類をRで試してみた

先日こちらの書籍をご恵贈いただきました。ガウス過程と機械学習 (機械学習プロフェッショナルシリーズ)作者: 持橋大地,大羽成征出版社/メーカー: 講談社発売日: 2019/03/09メディア: 単行本(ソフトカバー)この商品を含むブログを見るガウス過程と機械学習…

単純なK-meansと{TSclust}のDTWによる時系列クラスタリングとではどう違うのか実験してみた

これは単なる備忘録です。詳細を知りたいという方は、この記事の元ネタになった以下のid:sinhrksさんの記事をお読みください。 ここでの問題意識は非常にシンプルで「そもそも時系列クラスタリングをかなり膨大な行数のデータに対して実行する際にどれほど厳…

Ads carryover & shape effects付きのMedia Mix Modeling

これは単なる備忘録です。「論文とサンプルコード読みながら試しました」以外に何も内容のない記事ですのでご注意ください。特に個々の式の変数の説明については個人的な備忘録ゆえ大半を端折りますので、仮に興味を持たれた方は適宜論文の本文をご参照下さ…

日本の人工知能バブル、いよいよ弾けるか?

このブログでは定番のマーケットトレンド調査ですが、今回は若干雲行きの怪しさを感じさせる結果が得られたので取り急ぎシェアしておきます。ちなみに言うまでもなくこの調査は僕自身の個人的なものであり、この記事で述べられている見解はいかなり組織にも…

多重比較補正のはなし

最近になって、データ分析界隈で多重比較補正が話題に上ることが増えていると聞きまして。一方で、僕自身も何を隠そう研究者時代の専門分野が長年多重比較補正の問題に悩まされてきた分野だったこともあって、かなり若い頃から多重比較補正については色々勉…

時変係数動的線形モデル続き:時変・時不変・OLS線形回帰で比較してみる

2週間前にふと思い立ってこんなことを試してみたわけですが。 よくよく考えてみたら「データを生成した真のモデルが時変係数&モデル推定も時変係数」でやってみた結果を並べただけで、これを(例えば)時不変係数モデルで推定してしまった場合や単なるOLS線…

時変係数動的線形モデルをStanで推定してみる(追記あり)

これはただの備忘録です。目新しい内容は特に何もありません。きちんとした内容を学びたいという方は、先日著者の萩原さんからご恵贈いただいたこちらの書籍で学ばれることをお薦めいたします。MCMCに留まらず、粒子フィルタの実装&実践までカバーしていて…

統計モデリング基礎論続き:データの生成過程に沿った一般化線形モデル vs. 単なる対数線形モデル vs. ガサッと回した線形回帰モデル

これは黒木玄(@genkuroki)先生の以下のツイートを受けた小ネタです。https://t.co/ejyfiAN47a#統計 これはいい話を読ませてもらった。真の分布を含まない確率モデルでのフィッティングでどのように嫌なことが起こるかを知っていることは大事。(←まさにこれに…

"All models are wrong; but some are useful"(全てのモデルは間違っている、だが中には役立つものもある)という格言

George E. P. Box - Wikipedia統計学や機械学習の世界ではよく引用される"All models are wrong; but some are useful"(全てのモデルは間違っている、だが中には役立つものもある)という格言ですが、2013年に亡くなった統計学の大家George E. P. Boxの言葉…

男の子のなりたい職業1位が「学者・研究者」になったのは本当に日本人ノーベル賞受賞者のおかげか?(追記あり)

第一生命が例年行っている「大人になったらなりたいもの」つまり子供のなりたい職業ランキングのキャンペーンで、昨年2017年度の男の子のランキングでは「学者・研究者」が15年ぶりに1位になったというのが大きなニュースになっていました。なのですが、ここ…

(追記5件あり)統計モデリング基礎論再び:データの生成過程から見てGLMが最適な場合にあえて線形回帰を当てはめてみる

この記事は、遥か昔のこちらの記事の続きのようなものです。また何度も何度も恐縮ですが、今回の記事内容も付け焼き刃で書いているので色々間違っている可能性があります。お気付きの方は是非ご指摘くださいm(_ _)m各方面のエコノメトリシャンの方々と上記記…