時系列分析
この記事は、以下の@icoxfog417さんによる問題提起に合わせたちょっとした実験をまとめたものです。時系列予測の問題において、機械学習のモデルより既存の統計モデル(ARMAモデルなど)の方が予測精度において優良な結果が出るという研究。データへの適合=予…
実はこのネタは元々別のところでやり取りのあった話題だったりします。色々な都合があってここ最近{CausalImpact}に触れる機会が自分に限らず周囲でも増えているのですが、若い人たちから「そもそも{CausalImpact}って何をしているんですか?使う際は何に気…
TensorFlow Probability (TFP)がリリースされてからしばらく経ちますが、最近になってこんなモジュールが公開されたと知りました。 Framework for Bayesian structural time series modelsと題されている通りで、ズバリTFPでベイズ構造時系列モデルを推定す…
(Google Trends)最近時系列分析あまりやってないので、{bsts}の使い方を思い出しがてらついでに与太記事を書いてみます。お題は「データサイエンティスト」「人工知能」「AI(トピックス)」のGoogleトレンドから見る今後のブーム動向です。今回は互いに相互…
これは単なる備忘録です。詳細を知りたいという方は、この記事の元ネタになった以下のid:sinhrksさんの記事をお読みください。 ここでの問題意識は非常にシンプルで「そもそも時系列クラスタリングをかなり膨大な行数のデータに対して実行する際にどれほど厳…
遥か古の時代、まだ自分が研究者だった頃にデータ分析に使っていた手法のひとつに偏Granger因果 (partial Granger causality) というものがありました。これはGuo et al. (2008)で提唱されたもので、当時は著者グループ提供のオリジナルMatlabツールボックス…
これは単なる備忘録です。「論文とサンプルコード読みながら試しました」以外に何も内容のない記事ですのでご注意ください。特に個々の式の変数の説明については個人的な備忘録ゆえ大半を端折りますので、仮に興味を持たれた方は適宜論文の本文をご参照下さ…
2週間前にふと思い立ってこんなことを試してみたわけですが。 よくよく考えてみたら「データを生成した真のモデルが時変係数&モデル推定も時変係数」でやってみた結果を並べただけで、これを(例えば)時不変係数モデルで推定してしまった場合や単なるOLS線…
これはただの備忘録です。目新しい内容は特に何もありません。きちんとした内容を学びたいという方は、先日著者の萩原さんからご恵贈いただいたこちらの書籍で学ばれることをお薦めいたします。MCMCに留まらず、粒子フィルタの実装&実践までカバーしていて…
3年前に因果フェスというイベントでGranger因果について専門家でもないのに講演させられるという稀有な経験をしたわけですが。 その時のイベント報告記事で、会場でのディスカッションの内容を踏まえて僕はこんなことを書いたのでした。 非線形Granger因果性…
そう言えば、ちょっと前のデータ分析業界5年間振り返り記事で「人工知能ブームに引っ張られてデータサイエンティストブームも再燃しつつある」みたいなことを書いたわけですが、本当にそうなんだっけ?というところをこれまでに検証したことはなかったなぁと…
こういうメタ分析系の記事を書く時というのは大抵ネタ切れの時なんですが(汗)、最近になってこの辺のポイントでつまずいて困っているビジネスデータ分析の現場の話を聞くことがまた増えてきたので自分向けの備忘録も兼ねて記事としてまとめておきます。 そ…
これは実は既に元ネタのあるテーマです。 Cross-validation for time series | Rob J Hyndman 個人的にはトレンド・季節調整付き時系列データの回帰モデルをやる場合はほぼ例外なくベイジアンモデリングで回すんですが、一般にベイズ系のモデルは例えばWAIC…
Rパッケージ紹介ばかりが続いていて恐縮ですが。。。最近になってこんなものがFacebookからリリースされていたのを知りました。これはこれで使いやすそうだなと思ったんですが、実はGoogleからも同様のMCMCサンプリングベースの時系列分析向けCRANパッケージ…
この記事は4年前の以下の過去記事の続きです。大変遅まきながら*1、最近になって単変量時系列モデリングの手法としてARIMA / DLM以外にも幾つか方法があるのだということを知りました。一つは指数平滑法というかExponential Smoothing State Space Model (ET…
本日8月6日に駒場で開かれた日本生態学会関東地区会公開シンポジウム「非ガウス性/非線形性/非対称性からの因果推論手法:その使いどころ・原理・実装を学ぶ」通称因果フェスにて、Granger因果について話してきました。 ちなみに事前に林岳彦(id:takehiko-…
何か月1回しか書かなくなりつつあるこのシリーズですが、中には@berobero11さんのようにツッコミ倒すのを楽しみにして下さっている方もおられるようなので、久しぶりに更新してみます。 もちろん参考文献は以下の2冊 + PDF book。お題はCommandeur本の第5章…
もう松の内も明けてしまいましたが、遅ればせながら皆さん明けましておめでとうございます。今年もよろしくお願いいたします。 で、年明け早々にTwitterエンジニアブログに面白いネタが上がっていたのでした。 Introducing practical and robust anomaly det…
何かこのシリーズめちゃくちゃ久しぶりなんですが(汗)、ちょっと最近問題意識を抱いている話題があるのでそれに関連した形でStanでやってみようと思います。 それは時系列の「トレンド」の扱い。ビジネスの現場では、時系列を意識しなくても良い*1クロスセ…
色々と興味が発散していて違う話題ばかりしてますが、これもまだ全然終わってないので粛々と進めようと思います。ということで今回は季節調整のお話。Commandeur本の進行に合わせて、季節調整ありただしトレンドなしというモデルでいきます。もちろんテキス…
相変わらずグダグダな上に挙句の果てに既にRでやっちゃった例をまとめたPDF bookまであると判明してモチベーションだだ下がりなんですが、備忘録も兼ねてめげずに続けます。もちろんテキストは相変わらずこちらの2冊。 状態空間時系列分析入門作者: J.J.F.コ…
前回サクッとローカルレベル・モデルを推定してみたわけですが、そう言えばパラメータ推定は何もしなかったのでした。既に線形モデルも一般化線形モデルもこのブログで見てきている以上最小二乗法や最尤法やMCMCでパラメータ推定するというのは常識なわけで…
前回からだいぶ間が空いた上に、要は{dlm}パッケージで遊ぼう!という大袈裟なタイトルの割に中身のないこのシリーズ記事ですが(笑)、取るものもとりあえずちょっと例題をやってみようと思います。参考文献はまずこちらのPetris本。 Rによるベイジアン動的…
ちょっとStan一辺倒でやってるのも随分効率が悪いなぁと思い始めてきたところに、大仏のオッサンがこんなナイスな記事をupしていたのに今頃気付いたのでした(オッサン気付くの遅くてごめん)。 逐次モンテカルロ/(粒子|パーティクル|モンテカルロ)フィルタ…
実は業務でもStan使い始めてるんですが、まだまだ単位根ありパネルデータの分析に回すなど低レベルなものが多く、無情報事前分布と階層事前分布を巧みに使いこなして華麗にサンプリング。。。なんて夢のまた夢という情けない状況です(泣)。 で、気が付いた…
Rで計量時系列分析シリーズでだいぶ時系列データの話をしてきたわけですが、最近個人的に季節変動のあるデータを扱うケースが増えてきたので、備忘録的にまとめてみようかなと。 一般に、webデータサイエンスの領域で季節変動というと業種や領域にもよるもの…
タイトルを読んで字の如く、昨日10/19(土)開催のこちらの勉強会でお話してきました。 第30回 データマイニング+WEB@東京( #TokyoWebmining 30th)−機械学習活用・マーケティング 祭り− を開催しました - hamadakoichi blog TokyoRの時と同様、いつもTwitte…
前々から参加してみたいと思っていたTokyoRですが、ついに昨日の第33回に参加してきました。ちなみに初登壇のおまけつき。 Rで計量時系列分析~CRANパッケージ総ざらい~ from Takashi J Ozaki 正直言って詰め込み過ぎた感ありありなんですが、Rで計量時系列…
何気なく読んでいて、途中で「?」と思った記事がありました。 ITエンジニアのためのデータサイエンティスト養成講座(5):「ビールと紙おむつ」のような相関関係を探る分析手法にはどんなものがある?――データ分析方法についての検討 (1/5) 何をやっている…
前回の記事までは多変量時系列モデルとしてのVARモデルを扱ってきました。今回は一旦このシリーズの最終回ということで、元の単変量時系列モデルに戻って「状態変化を伴うモデル」を扱ってみようと思います。 ということでもはや毎回恒例になってますが、使…