渋谷駅前で働くデータサイエンティストのブログ

元祖「六本木で働くデータサイエンティスト」です / 道玄坂→銀座→東京→六本木→渋谷駅前

機械学習

RにTorchとLightGBMがやってきた

これまで、RとPythonは両方使える人が少なくないながらも開発陣やコミュニティの思想が違うせいもあってか、「Rは統計学向け」「Pythonは機械学習向け」的な住み分けが年々進み、特に機械学習関連の重要なフレームワーク・ライブラリ類はPython向けのみがリ…

Rで機械学習モデルの解釈手法たちを試してみる

この記事の前段として、まず事前に昨年書いた機械学習モデルの解釈性についての記事をご覧ください。僕が知る限り、機械学習実践のデファクトスタンダードたるPython側ではLIMEやSHAPといった解釈手法については既に良く知られたOSS実装が出回っており、相応…

ディープラーニング(Deep Learning)の歴史を振り返る

先日Quora日本語版でこんな回答を書いたのですが、ついでなので少し文脈情報を付け足してブログの方に再録することにしました。理由は単純で、このブログでディープラーニングの歴史についてまとめた記事を今まで書いてきたことがなく、そしてブログ記事にし…

機械学習や統計学を「社会実装」するということ

(Image by Pixabay)最近になって、こんな素晴らしい資料が公開されていたことを知りました。 この資料自体は著者のMoe Uchiikeさんが東大での講義に用いられたものだとのことですが、その内容の汎用性の高さから「これは全ての機械学習や統計学を実務で用い…

改めて、汎化性能と交差検証のはなし

以前こんな記事を書きました。 この辺の話はとっくの昔に常識になっていると思っていたのですが、昨今様々な「モデル」が提唱されて公の場で喧伝されることが増えてきており、その中には明らかにこれらの記事で指摘されている問題に引っかかっているものがあ…

AIで皆さんの好みにぴったり合う絶品インドカレーを作る方法をまとめて本にしました

最近思い出したように趣味の自作インド料理の話題を各所で披露することが多いのですが、完全に趣味が高じた結果としてAIというか機械学習とインド料理を掛け合わせたら面白いことが出来るのではないか?と思い、ついにこの度本まで出すことになりました(笑…

2020年版:実務の現場で求められるデータサイエンティスト・機械学習エンジニアのスキル要件

(Image by Pixabay)この記事は、昨年の同様のスキル要件記事のアップデートです。 正直言って昨年バージョンとの差分は殆どないのですが、一応この1年間の業界の進歩を踏まえて僅かながらアップデートしてありますので、ベースとなっているスキル要件につい…

ML design: 機械学習を確かならしめる「メタ」な枠組み

(By Gufosowa - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=82298768)ここ最近、事あるごとに僕が色々な人たちに提案している概念として"ML design"というものがあります。これは元々"ML Ops"(DevOpsと同じように機械学習の…

実務の専門家として機械学習や統計分析を手掛けたい人にオススメの書籍初級5冊&中級8冊+テーマ別11冊(2020年2月版)

(Image by Pixabay)この記事は以下のオススメ書籍リスト記事のアップデートです。 毎回の断り書きで恐縮ですが、この記事では「データサイエンティストや機械学習エンジニアなどデータ分析の実務の専門家として」*1機械学習や統計分析を手掛けていきたいとい…

Fashion-MNIST: 簡単になり過ぎたMNISTに代わる初心者向け画像認識ベンチマーク

(MNIST database - Wikipedia) 僕は画像認識分野は門外漢なのですが、ここ最近初心者向けにCNNのトレーニングを行うことを企画していて、その目的に適した画像認識のオープンデータセットを探していたのでした。 というと誰しも思いつくのがMNISTではないか…

Scalabilityを追求するということ

(Image by Pixabay)今年も恒例の年末振り返り記事の季節になりました(笑)。なおここ数年の年末振り返り記事はこちらから。 去年まではどちらかと言うと「stats/ML分野の進歩が早過ぎてついていけない」という愚痴半分諦め半分みたいな話をしていたわけです…

機械学習の説明可能性(解釈性)という迷宮

ちょっと前に、しょうもないことを某所で放言したら思いの外拡散されてしまいました。機械学習の説明可能性(解釈性)、大半のケースで求められているのは厳密な分類・回帰根拠ではなく受け手の「納得感」なので、特に実ビジネス上は説明可能性に長けたモデ…

全くのゼロから「駆け出しデータサイエンティスト」を育てる方法論

(Image by Pixabay)「データサイエンティスト」の第一次ブーム勃興から6年余り、人工知能ブームに便乗した第二次ブームで人口に膾炙してから3年余り、気が付いたら何やかんや言われながらもデータサイエンティスト及びその類似職が、じわじわと日本国内の産…

一般的な時系列のモデリング&予測に、機械学習系の手法よりも古典的な計量時系列分析の方が向いている理由を考えてみた(追記あり)

この記事は、以下の@icoxfog417さんによる問題提起に合わせたちょっとした実験をまとめたものです。時系列予測の問題において、機械学習のモデルより既存の統計モデル(ARMAモデルなど)の方が予測精度において優良な結果が出るという研究。データへの適合=予…

移り変わる「データサイエンティストの『常識』」について考える

(Image by Pixabay)先日、こんな話題を見かけました。【夏なので怖い話】こないだ、いかにもエリートな男性と知り合ったんですよ彼は年収1000万で飛ぶ鳥を落とす勢いのデータサイエンティストだっていうじゃないですかそれでふとAICの話題を持ちかけたんです…

Undersampling + baggingで不均衡データに対処した際の予測確率のバイアスを補正して、その結果を可視化してみる

この記事は以下の検証記事の続きです。 先日、Twitterでこんなお話を見かけました。分類問題で不均衡データを扱う際、ダウンサンプリングして学習すると予測確率にバイアスが生じるので、calibrationしようという話を書きましたhttps://t.co/qujK29crNY— 岸…

「データ分析をやるならRとPythonのどちらを使うべき?」への個人的な回答

(Background image by Pixabay)最近また「データ分析をやるならRとPythonのどちらでやるべきか」という話題が出ていたようです。 言語仕様やその他の使い勝手という点では、大体この記事に書いてあることを参考にすれば良いと思います。その上で、人には当然…

データサイエンティストがやらかしがちな過ちトップ10(海外記事紹介)

(Image by Pixabay) "Top 10 Statistics Mistakes Made by Data Scientists"という刺激的なタイトルの記事が出ているのをKDnuggets経由で知りました。「データサイエンティストがやらかしがちな統計学的な誤りトップ10」ということで、いかにもなあるある事…

AutoML Natural Languageで青空文庫に収録された作家8名の文章を分類してみる

先日の記事ではAutoML Tablesを試してみましたが、調子に乗ってこれまで触ってこなかったAutoML Natural Languageも試してみようと思ったのでした。 以前の記事にも書いたように、僕は元々自然言語処理が苦手でTensorFlow Hubのpre-trained modelによるfine-…

AutoML Tablesと他の機械学習モデルとのパフォーマンス比較をしてみた(追記あり)

以前よりGoogleではCloud AutoMLという"Learning to learn"フレームワークによる「人手完全不要の全自動機械学習モデリング&API作成」サービスを展開してきていましたが、それらは画像認識や商品推薦はたまた自然言語処理がメインで、最もオーソドックスな…

TensorFlow Probabilityのtfp.stsモジュールを使って構造時系列モデリングを回してみる

TensorFlow Probability (TFP)がリリースされてからしばらく経ちますが、最近になってこんなモジュールが公開されたと知りました。 Framework for Bayesian structural time series modelsと題されている通りで、ズバリTFPでベイズ構造時系列モデルを推定す…

機械学習のビジネス上の価値を「効果測定」して「数値評価」する方法

(Image by Pixabay)気が付けば、日本における第一次データサイエンティストブームから6年、人工知能ブーム開始から3年が経ったようです。意外と言っては何ですが、これまでのところ人工知能ブームも、そしてそれにブーストされた形で起こった第二次データサ…

ガウス過程回帰・分類をRで試してみた

先日こちらの書籍をご恵贈いただきました。ガウス過程と機械学習 (機械学習プロフェッショナルシリーズ)作者: 持橋大地,大羽成征出版社/メーカー: 講談社発売日: 2019/03/09メディア: 単行本(ソフトカバー)この商品を含むブログを見るガウス過程と機械学習…

Andrew Ngが説く「AIプロジェクトをいかにして始めるべきか」論

(Image by Pixabay) 大変に面白い記事がしばらく前のHBRに出ていて話題になっていました。筆者は、あのAndrew Ng。機械学習(ML)そして人工知能(AI)の研究者・教育者(Courseraの共同創設者)としてあまりにも有名ですが、Google BrainやBaiduのAI groupやLan…

2019年版:データサイエンティスト・機械学習エンジニアのスキル要件、そして期待されるバックグラウンドについて

(Image by Pixabay)この記事は、以前の同様のスキル要件記事のアップデートです。 正直言って内容的には大差ないと思いますが、今回は2つ新たな軸を加えることにしました。一つは「ジュニアレベル(駆け出し)」と「シニアレベル(熟練職人)」とで分けると…

生TensorFlow七転八倒記(10):テキストデータをTF-Hubでfeature vectorに直してからt-SNEにかけてみる

今回もただの備忘録ですが、どちらかというと番外編です。TensorFlow部分はあくまでもTF-Hubでテキストデータをfeature vectorに直すところまでのみで、そこから先は今まであまり試してこなかったt-SNE (t-distributed stochastic neighbor embedding)を使っ…

生TensorFlow七転八倒記(9):TF-Hub embeddingを利用して感情分析してみる

これまた小ネタです。大したことはしていないので、興味のない方は読み飛ばしてくださって結構です。今回のお題は、感情分析(sentiment analysis)です。題材として選んだのは、上記のオープンデータセットです。 一般に、感情分析自体はNLPが苦手な僕から見…

単純なK-meansと{TSclust}のDTWによる時系列クラスタリングとではどう違うのか実験してみた

これは単なる備忘録です。詳細を知りたいという方は、この記事の元ネタになった以下のid:sinhrksさんの記事をお読みください。 ここでの問題意識は非常にシンプルで「そもそも時系列クラスタリングをかなり膨大な行数のデータに対して実行する際にどれほど厳…

機械学習システム開発や統計分析を仕事にしたい人にオススメの書籍初級5冊&中級10冊+テーマ別9冊(2019年1月版)

(Image by Pixabay)この記事は以前の書籍リスト記事のアップデートです。 機械学習エンジニアやデータサイエンティストとして(もしくはそうではない職名であったとしても)機械学習システム開発や統計分析を仕事にしたい人なら、最低限これだけは読んでおい…

終わりなき学びと、社会実装と

(Image by Pixabay) これは恒例の年末ポエムです。何ひとつ学術的・技術的にためになるような内容は書かれておりませんので、予め悪しからずご了承ください。そして基本的にこの記事は昨年の年末ポエムの続きです。