渋谷駅前で働くデータサイエンティストのブログ

元祖「六本木で働くデータサイエンティスト」です / 道玄坂→銀座→東京→六本木→渋谷駅前

サンプルデータで試す機械学習シリーズ

LLMにデータ分析をさせてみる:テーブルデータの概要解釈

先日こんな記事を書いたのでした。はてブも400近くに達しており、良くも悪くもバズったようです。で、この記事の中で言いたかったことは幾つかあるのですが、その一つに「文書・テキスト要約など『そもそもLLMというかLM自体が得意な仕事』をさせると便利な…

SVMは復権し得るか?

Kaggleはすっかりただの野次馬の一人になって久しいんですが、しばらく前に行われたPetFinder.my - Pawpularity Contestというコンペで優勝者がSVR(サポートベクター回帰)を使ったことが話題になっていたというのを聞いて、NN全盛のこのご時世に意外だなと…

ガウス過程回帰・分類をRで試してみた

先日こちらの書籍をご恵贈いただきました。ガウス過程と機械学習 (機械学習プロフェッショナルシリーズ)作者: 持橋大地,大羽成征出版社/メーカー: 講談社発売日: 2019/03/09メディア: 単行本(ソフトカバー)この商品を含むブログを見るガウス過程と機械学習…

機械学習分類器ごとに汎化vs.過学習の様子を可視化してみる

以前12回まで続けた「サンプルデータで試す機械学習シリーズ」ですが*1。あれから色々分類器の手法やその実装もバリエーションが増えてきたということもあり、思い立って今回まとめてやり直してみようと思います。そうそう、12回シリーズの頃から愛用してい…

パッケージユーザーのための機械学習(12):Xgboost (eXtreme Gradient Boosting)

今やKaggleやKDD cup以下名だたる機械学習コンペで絶大な人気を誇る分類器、Xgboost (eXtreme Gradient Boosting)。特にKaggleのHiggs Boson Machine Learning Challengeの優勝チームが駆使したことで有名になった感があるようで。 その実装ですが、C++ベー…

パッケージユーザーのための機械学習(11):番外編 - AdaBoost

このシリーズ記事、教師なし学習をあらかたやったので*1もういいかなと思ってたんですが、ひょんなことから取り上げ忘れてたものがあったなぁと思い出したのでサクッとやってみようと思います。 忘れていたのはAdaBoost。普段はほとんど使わないブースティン…

パッケージユーザーのための機械学習(10):Affinity Propagation

だいぶ前回から間が空いてしまいましたが、ついに10回目になったこのシリーズ記事。。。多分クラスタリングだとこれが最後になるんじゃないでしょうか。以前話題に出ていたAffinity Propagationをやってみようと思います。 なのですが。今回も文献資料は見つ…

パッケージユーザーのための機械学習(9):混合ディリクレ過程

前回の記事からだいぶ経ってしまいましたが、皆様パッケージの使い心地はいかがでしょうか(汗)。ということで、今回はいよいよクラスタリングシリーズの大詰め、混合ディリクレ過程を取り上げます。 今回は僕も完全に理解しているわけではないので、ぶっち…

パッケージユーザーのための機械学習(8):混合モデルとEMアルゴリズム

教師なし学習シリーズもいよいよ佳境に入ってきましたねー、と言いつつ前回記事から既に2ヶ月半ぐらい経ってますが。。。ここからは主に混合モデルを取り上げていく予定です。今回もはじパタpp.165-174をベースにやっていきます。 はじめてのパターン認識作…

パッケージユーザーのための機械学習(7):K-meansクラスタリング

本シリーズ記事のカテゴリからPythonが消えて久しい今日この頃ですが、皆様いかがお過ごしでしょうか*1。とかいう前口上はどうでも良くて、とっとと今回のお題に入りましょう。今回はクラスタリングのド定番、K-means(k平均)クラスタリングです。 K-means…

パッケージユーザーのための機械学習(6):階層的クラスタリング

さて、教師あり学習の方はひと段落ついたので、今度は教師なし学習の話をやっていこうかと思います。と言っても僕が知っている範囲でなおかつ常用するような教師なし学習はRでの実装が割と貧弱なので、シリーズとしてはあまり面白くない感じになりそうです(…

パッケージユーザーのための機械学習:教師あり学習同士で分離超平面・決定境界を比較してみる

このシリーズ記事では、Rで*1色々な機械学習のアルゴリズムについて、それらがどんなものなのかを簡単なデータに対して分離超平面・決定境界を描きながら見てきました。 パッケージユーザーのための機械学習(1):決定木 - 銀座で働くデータサイエンティスト…

パッケージユーザーのための機械学習(5):ランダムフォレスト

(※はてなフォトライフの不具合で正しくない順番で画像が表示されている可能性があります) さて、こんな記事をクリスマス・イヴのプレゼントにするのはアレなんですが(笑)、教師あり学習&分類器系では一旦これでシリーズを〆る予定です。 トリを飾るのは…

パッケージユーザーのための機械学習(4):ニューラルネットワーク

(※はてなフォトライフの不具合で正しくない順番で画像が表示されている可能性があります) 実は僕は普段全くニューラルネットワークを使ってない上に、すぐ隣に再帰ニューラルネットワークでバリバリNIPSに通していたことのある教授氏がいるので*1、こんな…

パッケージユーザーのための機械学習(3):サポートベクターマシン(SVM)

(※はてなフォトライフの不具合で正しくない順番で画像が表示されている可能性があります) PythonでSMO-SVM書き下すという宿題がまだ終わってないくせにこれ書いていいのか物凄く迷うんですが(笑)、R Advent Calendar 2013の12月6日分第6回の担当に当たっ…

パッケージユーザーのための機械学習(2):ロジスティック回帰

(※はてなフォトライフの不具合で正しくない順番で画像が表示されている可能性があります) だらだらと機械学習をパッケージで回していく様子を眺めるこのシリーズ、今回はロジスティック回帰をやってみようと思います。ロジスティック回帰はどちらかという…

パッケージユーザーのための機械学習(1):決定木

(※はてなフォトライフの不具合で正しくない順番で画像が表示されている可能性があります) だいぶ前に「糞コードで頑張る機械学習シリーズ」と言うのを始めようとしたんですが、パーセプトロンをPythonで実装した次にMatlabで書いたSMO-SVMコードをPythonに…

単純パーセプトロンをPythonで組んでみる

いきなり自分でハードル上げてみました(笑)。ちなみに何故単純パーセプトロンを最初に持ってきたのか?というと、id:echizen_tmさんのブログ記事でも触れておられる通り 機械学習には大きく分けて「識別関数」「識別モデル」「生成モデル」の3つの種類があ…

「機械学習とは何ぞや」をゆるーく説明してみる

追記(2017年7月12日)こちらの記事がGoogle検索結果でかなり上位に来ているようですが、投稿から既に4年以上が経過しており内容としては非常に古いものになっております。よろしければ「機械学習」カテゴリの比較的新しい記事もご参照ください。tjo.hatenab…