読者です 読者をやめる 読者になる 読者になる

六本木で働くデータサイエンティストのブログ

元祖「銀座で働くデータサイエンティスト」です / 道玄坂→銀座→東京→六本木

ビジネス実務の現場で有用な統計学・機械学習・データマイニング及びその他のデータ分析手法10+2選(2016年版)

そう言えば3年前にこんなまとめ的エントリを書いたのでした。この内容はそのままかなりの部分が2年前に刊行した拙著の原案にもなったということで、色々思い出深いエントリです。なのですが。・・・この3年の間に統計学・機械学習・データマイニングの諸手法…

グラフ・ネットワーク分析で遊ぶ(5):何となくNIPS2015の共著者グラフを描いてみた

先日閉幕したNIPS2015ですが*1、そう言えばサイト上に全論文のタイトル&著者一覧があるなと思い出したのでした。 ということで、これまでの4回のグラフ・ネットワーク分析特集で学んだことをこの著者一覧に応用してみようかと思います。やったことはごくご…

グラフ・ネットワーク分析で遊ぶ(4):コミュニティ検出(クラスタリング)

ネットワーク全体指標はあまりビジネス的に扱うことが多くないので、代わりに今回はコミュニティ検出(要はグラフ構造内でのクラスタリング)について取り上げます。ただし前回まで参考にしていた『ネットワーク分析』はあまりコミュニティ検出についてそこ…

グラフ・ネットワーク分析で遊ぶ(3):中心性(PageRank, betweeness, closeness, etc.)

ビジネス的に重要度が高いのがこの辺の話題ではないかな?ということで、今回は中心性(centrality)の話題を取り上げてみようと思います。参考文献はいつも通りこちら。 ネットワーク分析 (Rで学ぶデータサイエンス 8)作者: 鈴木努,金明哲出版社/メーカー: 共…

グラフ・ネットワーク分析で遊ぶ(2):最短経路長など

前回の記事に引き続き主に{igraph}の各関数で遊びながらグラフ理論・ネットワーク分析を学ぶこのシリーズですが、今回は様々なノード間の特徴量について見てみます。もちろん今回も参考文献はこちら。 ネットワーク分析 (Rで学ぶデータサイエンス 8)作者: 鈴…

グラフ・ネットワーク分析で遊ぶ(1):グラフ可視化・描画手法

ちょっと興味が湧いてきたので、今後しばらくグラフ理論・ネットワーク分析に力を入れてみようかなと思ってます。ということで『レ・ミゼラブル』の時同様にオープンデータセットを取ってきましょう。 Network data 今回使うのは"Neural network"。これは(…

UCI機械学習リポジトリのデータ(など)で遊ぶ(2):『レ・ミゼラブル』の人物相関図

第2回にして既にUCIのデータセットではないんですが(笑)、ちょっと自分の練習も兼ねてご紹介。今回はグラフというかネットワークがお題です。ぶっちゃけ僕自身はグラフ理論&ネットワーク分析は全くもって真面目に勉強してないので、炎上ラーニングも兼ね…