読者です 読者をやめる 読者になる 読者になる

六本木で働くデータサイエンティストのブログ

元祖「銀座で働くデータサイエンティスト」です / 道玄坂→銀座→東京→六本木

データサイエンティストもしくは機械学習エンジニアを目指すならお薦めの初級者向け6冊&中級者向け15冊(2017年春版)

(Photo credit: https://pixabay.com/en/books-door-entrance-italy-colors-1655783/)この記事は一昨年のこの書籍紹介記事のアップデート版です。相変わらず毎月のように新刊書が出続けるデータ分析業界ですが、良い本が増え続けてきたせいでついに初級者向…

実務の現場においてモデリング(統計学的・機械学習的問わず)を行う上での注意点を挙げてみる

気が付いたら僕がデータ分析業界に身を置くようになってそろそろ5年近くになるんですね*1。この5年間の間に色々勉強したり業界内で見聞してきた経験をもとに、「実務の現場においてモデリングを行う上での注意点」についてだらだらと書いてみようと思います。…

統計的因果推論(5): Platt's scalingで機械学習分類器による傾向スコアを調整してみる

この記事は以下の記事の続きです。機械学習分類器で算出した傾向スコアを調整する話ですが、最後に課題として残ったのがprobability calibrationによる実践。探してみると前回の記事でもやったisotonic regressionとか色々出てくるんですが、もう一つ出てく…

統計的因果推論(4): 機械学習分類器による傾向スコアを調整してみる

この記事は以下の記事の続きです。ご覧の通り、機械学習分類器3種で傾向スコアを算出してみたらおかしな結果になったわけです。この点について、実は後日2点ほどコメントをいただきました。1つはブコメで、統計的因果推論(3): 傾向スコア算出を機械学習に置…

統計的因果推論(3): 傾向スコア算出を機械学習に置き換えてみると

この記事は以下の記事の続きです。前回の記事では普通にロジスティック回帰で傾向スコアを求めたのですが、傾向スコアというのは元はと言えば「共変量に基づいてそれぞれの群に割り付けられる確率値を求めたもの」なので、やろうと思えば機械学習分類器で代…

統計的因果推論(2): 傾向スコア(Propensity Score)の初歩をRで実践してみる

さて、統計的因果推論についてだらだらと独習していくこのシリーズですが、今回はDonald Rubinが考案したRubinの因果モデルで用いられる、傾向スコア(Propensity Score)を取り上げてみようと思います。「お前岩波DS3で事前に原稿読んで中身は知っているはず…

統計的因果推論(1): 差分の差分法(Difference-in-Differences)をRで回してみる

世の中様々な介入効果・施策効果を検証するためのexperimentが行なわれていると思うんですが、意外とその効果検証というのは難しいものです。特にいわゆる統計的因果推論の立場から見れば、web上で接触する一般ユーザーに対する介入や施策といったものの検証…